

Giunzioni metallo-ceramico (YAG-TiAlV): Studio della bagnabilità e della reattività mediante approccio termodinamico

Sofia Gambaro

F. Valenza¹, G. Cacciamani², M.L. Muolo¹, A. Passerone¹

¹Institute for Energetics and Interphases- IENI-CNR, Genoa, Italy ²University of Genoa- DCCI, Genoa, Italy

Giunzione metallo-ceramico (YAG-TiAlV): Studio della bagnabilità e della reattività mediante approccio termodinamico

1. Aim and approach

2. <u>Materials</u>

3. Experimental procedure

4. Results and discussion

5. Conclusions

1. Aim and approach

Optimization of the production of metal-ceramic joints:

Wettability study (sessile drop technique)

Interfacial reactivity evaluation (SEM-EDS, RX)
 Metal drop/ceramic Ceramic/filler alloy/ceramic or metal

> Thermodynamic approach (CALPHAD method)

1. Aim and approach

2. Materials

YAG-Ti6Al4V metal-ceramic joints for marine applications

- **YAG** (Y₃Al₅O₁₂) as transparent windows (T~80% vis.) ¹
- > AgCuTi (AgCu, AgTi, Ag, Cu) as filler

YAG

AgCuTi

Ti6Al4V

> **Ti6Al4V** as <u>corrosion resistant</u> metallic support

- High pressures avoided
- Limited surface preparation
- Complex shapes can be joined

1. J. Hostaša, L. Esposito, D. Alderighi, A. Pirri. Optical Materials. 35, 4 (2013) 798-803.

3. Experimental procedure

3. Experimental procedure

Wetting samples

- Holding time: 1h
- Fast cooling

N		Ag		Cu		Ti	
Filler alloys		wt%	at%	wt%	at%	wt%	at%
compositions	AgCuTi	70.5	57.7	26.5	36.8	3.0	5.5
	AgCu	72.0	60.2	28.0	39.8	-	-
., G. Cacciamani, L. Esposito, A. Passerone.	AgTi	96.0	91,4	-	-	4.0	8.6

2. Gambaro S., Muolo M.L, Valenza F., G. Cacciamani, L. Esposito, A. Passerone. J. of the Eur. Cer. Soc., 2015

AgCuTi/YAG:

AgCuTi/YAG:

3. Hinryj S., Indacochea J. Chem. Met. Alloys, 20084. O. Dezellus et al. International Journal of Research, 2011

29th February_2016_ Padova

L*2

11.36

60.45

28.18

1.13

0.318

6.6

AgCuTi/YAG (950°C)

Layer Composition (at%)

	Ag	Al	Cu	0	Ti	Y	
YAG	-	26	-	64	-	15	
1 st	0.6	3.5	16.5	41	15.2	19.8	\frown 5
2 nd	1.5	2.40	35.6	18.6	41.1	0.8	$(M_4X)^3$
3 rd	2.5	0.8	33	-	63.7	-	CuTi ₂
4 th	2.3	0.8	72.5	-	24.4	-	Cu ₄ Ti

 $M_4 X \ ({\rm M}_{{\scriptscriptstyle 23}} {\rm X}_6)$ metal-rich ceramic compound associated to the significant wettability improvement

5. A.H. Carim. Scripta Metallurgica et Materialia 25 (1991)

AgCuTi/YAG (850°C)

Layer	Composition (at%)						
	Ag	Al	Cu	0	Ti	Y	
YAG		25.3	0.3	58		16.4	
1 st	0.4	3.1	15.7	44	17.2	19.6	
2 nd	83.6		12.9		3.5		(Ag)
2 nd	3	2.3	50.5		44.2		CuTi
3 rd	2.5	2.7	45		49.8		CuTi
4 th	60		39.1		0.9		Ag-Cu

Joining tests:

Samples	T [°C]
YAG/AgCuTi/Ti6Al4V	850
YAG/Ag/Ti6Al4V	1000

A. Brazing with active filler alloys:

AgCuTi: Ti as active element

- Higher process cost
- Limited Ti diffusion

B. Alternative joining approach:

Active-metal-free filler alloys: pure Ag

- > Ti diffusion from the metallic support
- 'Infinite' source of Ti

6. Gambaro S., Valenza S., G. Cacciamani, Muolo M.L., A. Passerone. "Brazing transparent YAG to Ti6Al4V: reactivity and characterization" Submitted., 2016

YAG/AgCuTi/Ti6Al4V (850°C)

- > No fractures or defects along the interface
- Continuous interface
- Well distributed microstructure

	Layer	Thickness	Ag	Al	Cu	0	Ti	V	Y
Ti6A	l4V substrate		-	10.5	-	-	86.0	3.5	-
1^{st}	light phase	10 um	2.0	10.0	20.0	-	66.0	2.0	-
	dark phase	10 μm	-	20.0	3.0	-	73.0	4.0	-
2^{nd}	CuTi	10 µm	1.5	1.5	49.0	-	47.0	1.0	-
	(Ag)		90.0	-	10.0	-	-	-	-
3^{rd}	CuTi	80 µm	5.3	7.2	42.0	-	45.5	-	-
	(Cu)		3.0	2.0	87.0	-	8.0	-	-
4^{th}		2 µm	1.0	-	24.0	44.0	5.0	-	26.0
YAG			-	25.0	-	65.0	-	-	15.0

YAG/Ag/Ti6Al4V (1000°C)

Layer		Thickness	Ag	Al	0	Ti	\mathbf{V}	Y
Ti6Al4V			-	10.5	-	86.0	3.5	-
1^{st}		50 µm	2.6	12.4	-	81.0	4.0	-
2^{nd}	(Ag)	75	97.5	-	-	2.5	-	-
	(Ti)	75 μm	2.0	10.0	-	87.0	1.0	-
3 th		2 µm	12.5	3.5	60.5	2.0	-	21.5
YAG			-	25.0	60.0	-	-	15.0

5. Conclusions

Theoretical work

- Wettability
- Reactivity tests
- 1) Good adhesion
- 2) Wettability of the ceramic by the filler
- 3) Wettability of the metallic support by the filler
- 4) Controlled reactivity

- Thermodynamic database CALPHAD METHOD
 - Processing temperature
 Holding time
- Choice and redefinition of the filler alloy

Best joint performances

5. Conclusions

Joining:

- 1. Good joints obtained
- > YAG/AgCuTi/TiAlV at 850°C
- > YAG/Ag/TiAlV at 1000°C

- 2. The Ti amount is not significantly different in the layers in contact with the YAG
- > About 5 at% with active-filler; about 2 at% with Ag

- 3. YAG/Ag/Ti6Al4V
- No intermetallic compounds formed at the interface Important for the mechanical performance

5. Conclusions

Work in progress:

Deeper evaluation of the joints to determine the best performances:

- Corrosion resistance tests (marine water)

IENI-CNR laboratory: Alessandro Benedetti

- Vacuum tight tests

Grazie per l'attenzione

Acknowledgements

Fabrizio Valenza Gabriele Cacciamani Alberto Passerone Maria Luigia Muolo

This study has been financed by the Flagship CNR-MIUR project "RITMARE".

- G. Battilana (IENI-CNR) for the SEM-EDS analysis,
- F. Mocellin (IENI-CNR) for the technical support,
- J. Hostasa (ISTEC-CNR) for the YAG preparation are gratefully acknowledged.