

Conferenza di Istituto

Padova, 29 Febbraio – 1 Marzo 2016

Maria Luigia Muolo

U.O.S Genova

Materiali interfacce giunzioni per l'energia ed applicazioni ad alta temperatura

Materials for energy: Electrolytes for SOFCs

Giovanna Canu

Maria Teresa Buscaglia - Vincenzo Buscaglia

Materials for Electrochemical Energy Conversion

Surfaces and Interfaces in liquid– solid systems at high temperatures Thermophysical

Corrosion by Liquid

Joining

POSTER P17

Scheelite-type $LaW_xNb_{1-x}O_{4+x/2}$ electrolyte: synthesis, characterisation and chemical compatibility with electrode materials

Materials for energy: SOFCs

• Solid oxide fuel cells (SOFCs): electrochemical device which converts chemical energy into electricity, made up of all solid state materials

- Based on the chemical reaction between H₂ (at the anode) and O₂ (at the cathode) to produce water
- Main components:
 - Electrolyte, cathode and anode
- Other components:
 - Current collectors, Interconnects

Activities

- 1. Ionic conductors and mixed conductors materials
- 2. Electrodes for SOFCs operating at intermediate temperatures
- 3. New design for SOFCs

Liu at al., Materials Today 14, 11 (2011)

Electrolytes for SOFCs – poster P17FIRB2012

- \circ Research on LaNbO₄-based materials
- Recently proposed as proton conductors (Haugsrud, Norby, *Nature Materials* 2006, 56, 193)
- High stability in CO₂-containing atmospheres and water vapour environments, unlike perovskite-based materials

The activity is focused on the use of innovative approaches to overcome the limitations of the material, *e.g.* in terms of solubility of dopants, conductivity, etc.

 It is developed through the synthesis, structural, microstructural, electrochemical characterisation of materials

Materials for Elettrochemical Energy Conversion

Massimo Viviani Sabrina Presto

Antonio Barbucci Paola Carpanese

Materials for Energy: Electrolites foe SOFCs

Surfaces and Interfaces in liquid– solid systems at high temperatures Thermophysical

<u>Corrosion by Liquid</u>

Joining

POSTER P36 *MErgELab: Materials and Electrochemical processes for Energy*

Materials for Electrochemical Energy Conversion

Protonic, Anionic and dual electrolytes for SOFC /SOEC

 $BaCe_{0.85}Y_{0.15}O_{2.925}$

Materials for Electrochemical Energy Conversion Electrodes for IT-SOFC : impregnated **cathode**

LSM-impregnated LSCF

cathode on SDC electrolyte

without impregnation

- higher R_{pol}
- degradation

with impregnation

- lower R_{pol}
- no degradation

M.Viviani, S.Presto, A. Barbucci, M.P. Carpanese

Materials for Electrochemical Energy Conversion

New architectures: reversible dual cell

- \square no dilution of fuel with H_2O (higher OCV)
- I stationary conditions in the 3 electrode compartments ($P_{H_2} = 1; P_{O_2} = 1; P_{H_2O} = X$
- \square less degradation of interconnects and sealing on H_2 side
- □ *fast switching between SOFC/SOEC modes*

M.Viviani, S.Presto, A. Barbucci, M.P. Carpanese

Materials for Electrochemical Energy Conversion

New architectures: impregnated metal supported SOFC

hybrid current collector/support mechanically and chemically stable under oxidant and reducing atmosphere

SOFC

metallic foam - oxide protected Ni-Cr-Al

ceramic electronic conductor La-SrTiO $_3$

M.Viviani, S.Presto, A. Barbucci, M.P. Carpanese

Materiali interfacce giunzioni

per l'energia ed applicazioni ad alta temperatura Surfaces and Interfaces in gas-liquid-solid systems at High Temperature

Materials for Energy: Electrolites foe SOFCs

Materials for Electrochemical Energy conversion Thermophysical

Corrosion by Liquid

Joining

Interfacial phenomena in liquid metal systems

Young's equation

 $\frac{\gamma_{SV}-\gamma_{LS}}{\gamma_{LV}}=\cos\theta$

• S/L interface

Dissolution of the solid phase, infiltration of the liquid into the solid, formation of interfacial compounds, adsorption of active elements (e.g. Ti, Cr)

Gibbs (isotherm) d Υ = - $\Sigma_i \Gamma_i d\mu_i$

• L/V interface

Evaporation, adsorption of gaseous compounds (e.g. oxygen), oxidation

• S/V interface

Oxidation-deoxidation of the surface, selective evaporation (e.g. SiO)

Investment casting of turbine blades

hybrid components by infiltration: foams metal-ceramic composites CMCs SiC/SiC

metallurgy composites

joining

metal-ceramic joining for aerospace, energy production, prosthetic parts, vacuum tight sensors

Modelling

Rada Novakovic

Surfaces and Interfaces in liquid– solid systems

Presentazione Junior - *Donatella Giuranno* Modellizzazione delle proprietà chimico-fisiche di superficie e di bulk dei materiali: attività attuali e potenzialità Thermophysical Properties of Liquid

Corrosion by Liquid Metals

Reaction Bonded Silicon Carbide RBSC

Wetting of metal-

Joining

POSTER P13

Modelling and simulation of metallic systems: Thermodynamic, Statistical mechanics & Kinetic Theory of Matter approaches

- 1. Phase diagrams optimization by CALPHAD method
- Prediction of thermophysical properties of metallic melts:
 2.1 surface properties (surface tension & surface segregation)
 2.2 dynamic properties (diffusion, viscosity, electrical resistivity)
 2.3 microscopic functions (concentration fluctuations & short range ordering)
- 3. <u>Study of oxidation phenomena at the surface of metallic melts:</u> Fluido-dynamic model
- 4. <u>Modelling of microstructure evolution</u> of liquid / solid interface: Phase field method
- 5. <u>Studies on "Small systems"</u> (nanosized particle > 4 nm)
 - 5.1 Calculations of nanosized Phase diagrams (extended CALPHAD method)
 - 5.2 Melting temperature depression
 - 5.3 Coalescence / aggregation of nano-sized particles

Models Framework: Home-made software in Matlab and/or Commercial software

Thermophysical Properties of Liquid Metal Systems – P21

Ente finanziatore: ESA e ASI

Collaborations: DLR, UNI-ULM, UNI -TO, CNRS, EMPA, UNI-Alberta, UNI-Warwich, AREVA, NETZSCH, TATA, Jaxa, Tokyo University...

Combined experimental-theoretical method aiming to study the thermophysical properties, the reactivity and the relationships with microstructure evolution of molten melts

GOALS:

✓ Optimization of industrial processes

✓ Design of new materials for HT appl.

Systems investigated:

- Al-Ni intermetallics (Fuel Cell catalysis; Turbines, etc..)
- Al-Ti based alloys (Turbines-casting process; Aerospace appl.)
- □ Cu based alloys (Micro-electronics.....)
- □ Sn-rich alloys (Solders)
- Ni based superalloys (Power generation components etc....)
- Si alloys (Semiconductors; composites)
- □ Cu-Zr based alloys (HEA; BMG...)

Corrosion by liquid metal (Pb / PbBi eut) of ferritic/martensitic and ODS steels

Ente finanziatore: EU-EURATOM

Collaborations: CNR-IFP, KIT, CEA, CIEMAT, ENEA....

Qualification of reference materials for the Gen IV reactors with particular attention to the italian concepts of Lead Fast Reactor (LFR)

The analysis of the corrosion behavior of different structural materials in contact with liquid Pb and LBE (coolants), allows a proper selection of materials and procedures for the HLM technologies.

Corrosion of T91 steel by liquid Pb after 550 h under an Ar atmosphere

Corrosion of AISI 316 steel by liquid LBE after 1500 h under an Ar/H₂ atmosphere

For the understanding of corrosion mechanisms, the study of the chemistry of heavy liquid metals through the monitoring and **the control of the dissolved oxygen** is fundamental.

Development of an electrode for the control and monitoring of oxygen content in the liquid metal bath

Phisico-chemical conditions of oxidation regimes for the Pb-O-Bi system

Alternative solutions are required to overcome the corrosion effects such as surface protective films

See collaboration with Padoa Group and CNR IFP (**POSTER**)

Reaction-Bonded Silicon Carbide (RBSC)

Collaborations: Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante

Combined experimental-theoretical method aiming to study the kinetics of reactive infiltration of Me-Si alloys into C-porous materials and to determine the elementary process limiting the infiltration rate

GOALS:

- ✓ Production of improved SiC/Me_xSi_y composites
- ✓ Design of new materials for :
- ✓ M-EHT Applications
- ✓light-weighting
- ✓ Electronics
- ✓ Breaking systems
- ✓ anti-ballistic shields, etc.

Systems under study:

<u>C-materials/porous preforms</u>

HOPG, GC Graphite, C-fibers, C/SiC

<u>Me-Si alloys</u> Si, Si-Co, Si-Ir, Si-Zr, Si-Mo, Si-V.

Gabriele Cacciamani

Wetting of Metal-Ceramic Systems

1. Analysis of wetting

sessile drop after cooling (θ >90°)

2. Thermodynamic assessment of the interface

3. Manufacturing of joined specimens

Example of HfB₂/HfB₂ joint

4. Mechanical characterization: shear test

Joined samples after rupture test andload displacement curve

Bonding procedures for SiC-SiC composites for aerospace – P39

<u>Target application</u>: bodyflaps for **ESA IXV** experimental reentry vehicle (assembly of CMCs in complex parts)

<u>Methodology pursued:</u> advanced brazing through metallic interlayers (e.g. Al-Ti, Co-Ta, Ni-Ta)

Kinetics of wetting

Interfacial microstructure

Joint obtained by Al-Ti: cross section

SiC

- Good wetting of Al-Ti alloys on SiC.
- Formation of interfacial $Ti_3Si_{1-x}Al_xC_2$ whose melting point is over the testing temperature: good for high temperature applications.

Project ADMACOM (Advanced manufacturing routes for metal/composite components for aerospace, <u>www.admacomproject.eu</u>, EU-FP7 2007-2013, grant agreement 609188).

Al₃Ti(Si)

Ti₃Si_{1-x}Al_xC₂

La ricerca italiana per il mare

Small prototypes for mechanical, vacuum and sea water tests

Presentazione Iunior Sofia Gambaro

HIGH TEMPERATURE TENSIOMETRIC LABORATORY

Internal view of Pt furnace

Liquid metal sample on sappphire crucible (Large Drop method)

Zirconia sensors to control amd measure the Oxygen Partial Pressure

VERY HIGH TEMPERATURE TENSIOMETRIC LABORATORY

in collaboration with

Advantages:

- <u>Capillary purification</u> of the drop during its formation
- Smaller contact area between container (capillary) and liquid metal (<u>quasi</u> <u>containerless method</u>)

- ✓ Experimental temperature: up to 2100°C
- Manipulators for movement of samples, capillary and support
- 3 thermocouples for temperature control
- ✓ Real-time residual gas analysis
- Methods applicable:
 Sessile drop+Pendant drop
 +Tranferred drop

CORAL : Corrosion Apparatus for Liquid Metal

Experimental apparatus for wetting tests

Materiali, interfacce e giunzioni per l'energia ed applicazioni ad alta temperatura

Giorgio Battilana - Responsabile Laboratorio di Microscopia Elettronica Francesco Mocellin – Staff Tecnico

Staff Amministrativo: Francesco Bruzzone Marcella Costigliolo Elena Parodi Italo Simonini

properties

Grazie per l'attenzione