# IENI Conferenza d'Istituto 29 febbraio – 1 marzo 2016

**Composizione del Gruppo** 

Marco Musiani, Dirigente di ricerca Sandro Cattarin, Primo ricercatore Nicola Comisso, Ricercatore Lourdes Vazquez-Gomez, Ricercatore Enrico Verlato, CTER Luca Mattarozzi, CTER TD

# IENI Conferenza d'Istituto 29 febbraio – 1 marzo 2016

Generalità sull'Attività di Ricerca

- Vari metodi chimici ed elettrochimici vengono impiegati nella preparazione e caratterizzazione di materiali per applicazioni in energetica, sensoristica e protezione anti-corrosione.
- L'attività combina aspetti di elettrodeposizione (o deposizione spontanea) ed elettrocatalisi (per elettrolizzatori o elettroanalisi).
- Le tecniche elettrochimiche impiegate comprendono voltammetria, cronoamperometria, cronopotenziometria, impedenza.
- Grazie all'apporto di colleghi IENI, si utilizzano più o meno regolarmente SEM, EDS, XRD, MS ...

# IENI Conferenza d'Istituto 29 febbraio – 1 marzo 2016

#### Comunicazioni

- Marco Musiani Preparazione di catalizzatori per combustione catalitica mediante modifica elettrochimica di schiume metalliche
- Luca Mattarozzi Elettrodeposizione di metalli porosi e leghe metalliche porose: loro applicazioni
- > Nicola Comisso Elettrodeposizione di ossidi metallici porosi

Preparazione di catalizzatori per combustione catalitica mediante modifica elettrochimica di schiume metalliche

Progetto finanziato da MSE – Ricerca di sistema Collaborazione con Istituto Ricerche sulla Combustione IRC – CNR Napoli

# Catalytic Combustion vs. Flame Combustion



- Ultra low emissions NO<sub>x</sub>, CO, VOC
- Stable in wide operating range: outside "normal" flammability
- Suitable for micro burners
- Well suited for **process intensification** via integration with heat-exchanger
- Heat produced directly on a solid surface (catalyst) rather than in gas phase
- Efficiently transferred to drive:
  - Thermo Electric Generators
  - Photo Voltaics Cells
  - Fuel Reformers/ Fuel Cells
- Decentralized Combined Heat and Power generation, Portable devices



## Structured Catalysts / Catalytic Burners



#### Metallic Open Cell Foams

- Large geometric contact area
- Enhanced mass/heat transfer
- Light-weight / Low thermal inertia
- High mechanic and thermal resistance
- Extremely low pressure drops
- Shaped in almost any geometry
- Tailored properties: Porosity, Density, Thermal conductivity, ...

#### Active phase:

- ✓ Supported Noble Metals Pt, Rh, Pd dispersed on intermediate washcoat layer
- × Cumbersome preparation methods /inhomogeneous coating / pore blocking

#### State-of-the-Art Preparation of LTC or CPO Catalysts

The procedure for the preparation of supported catalyst is quite complex. An example:

- (i) growth of an Al<sub>2</sub>O<sub>3</sub> layer on the FeCrAlloy support (5 min at 1200°C, in O<sub>2</sub> 0.5 vol% in N<sub>2</sub>);
- (ii) γ-alumina powder is prepared by reacting aluminum nitrate with urea at 600°C (with different amounts of La as stabilizer);
- (iii) impregnation of alumina with Pd(NO<sub>3</sub>)<sub>2</sub> aqueous solution, drying at 120° overnight, calcination at 500°C in air for 2 h to obtain PdO, or hydrogen reduction at 400°C to obtain metallic Pd;
- (iv) preparation of a slurry of the Pd-alumina catalyst and methyl cellulose in diluted nitric acid solution;
- (v) repetitive dipping and drying of the FeCrAlloy support in the slurry;

(vi) final calcination at 1000°C for 12 h.

# Fecralloy Foam



| Fecralloy | Fe   | Cr   | Al   |
|-----------|------|------|------|
| 20 ppi    | 72.1 | 19.6 | 8.2  |
| 30 ppi    | 69.5 | 20.3 | 10.2 |
| 50 ppi    | 70.1 | 20.8 | 9.1  |
| 60 ppi    | 71.0 | 20.1 | 8.9  |
| 80 ppi    | 68.2 | 23.6 | 8.2  |

50 ppi foam 0.34 g cm<sup>-3</sup> apparent density 95% void volume

Excellent mechanical stability Outstanding resistance high temperatures Easy mass/heat transport Very good electrical conductivity

# Fecralloy: not only advantages

The specific surface area, estimated by EIS, does not always increase with the grade





## Foams with different grade have different micro-

#### **Unreliable manufacturing**

Different batches of 50 ppi Fecralloy foams have specific surface area between 35 and 100 cm<sup>-1</sup>

# Pt Electrodeposition onto Fecralloy Foam electrodes

#### **Experimental conditions**

- Fecralloy foam samples were washed with dichloromethane, acetone and water
- Deposition at -0.4 V vs. SCE in 1 × 10<sup>-3</sup>
  M or 2 × 10<sup>-3</sup> M H<sub>2</sub>PtCl<sub>6</sub>, at pH 2.0
- Current efficiency 35-40%.



#### Pt Loading 0.1 to 15 mg $cm^{-3}$

controlled through deposition charge and checked with UV-Vis spectroscopy.





| Pt Loading              | Number of particles                     | Pt covered area |
|-------------------------|-----------------------------------------|-----------------|
| 2.9 mg cm <sup>-3</sup> | 8.6 x 10 <sup>7</sup> cm <sup>-2</sup>  | 9.9 %           |
| 4.3 mg cm <sup>-3</sup> | 8.65 x 10 <sup>7</sup> cm <sup>-2</sup> | 16.4 %          |

Pt particles are nucleated simultaneously at the most reactive sites. Then they grow in size, not in number





The chemical nature and surface state of the foam influenced the morpholgy of the deposits more than the nature of the noble metal or the deposition mode.

**Pt-Fecralloy** 







Pt-Ni Foam Galvanic displacement

**Pd-Fecralloy** Galvanic displacement

#### Pt electrochemically active surface area

# It may be estimated from the hydrogen adsorption/desorption charge (in 1M KOH).

| $[H_2PtCl_6] \ge 10^3$ | Pt Loading          | Pt surface area                |
|------------------------|---------------------|--------------------------------|
| Μ                      | mg cm <sup>-3</sup> | m <sup>2</sup> g <sup>-1</sup> |
| 1                      | 0.14                | 6.1                            |
| 1                      | 0.47                | 5.4                            |
| 1                      | 0.62                | 5.6                            |
| 1                      | 1.38                | 5.6                            |
| 1                      | 1.62                | 7.7                            |
| 1                      | 1.93                | 7.4                            |
| 2                      | 1.73                | 22.2                           |
| 2                      | 2.95                | 15.7                           |
| 2                      | 4.29                | 14.0                           |
| 2                      | 10.8                | 12.3                           |



- Pt-Fecralloy catalysts were tested under lean dry conditions.
- The reactor was operated at nearly atmospheric pressure, under pseudoisothermal conditions.
- Temperature was ramped from <u>50°C to</u> <u>600°C (3°C/min)</u>.
- A lean methanol in air feed (<u>0.5 2.0 %</u> <u>vol.</u>) was prepared by mixing two air streams, one of which was passed through a methanol saturator. Total flow-rate to the reactor was normally set at 40 Sdm<sup>3</sup> h<sup>-1</sup>.



- The effluent gas was continuously analyzed for <u>CO, CO<sub>2</sub></u>, <u>CH<sub>4</sub>, NO and O<sub>2</sub></u>. The CH<sub>4</sub> detector gave a linear response to methanol, thus it was used to measure its concentration in the feed stream after a specific calibration.
- The removal of water formed in the products before the analysis precluded a correct measurement of the outlet methanol concentration.
- > The methanol yield to  $CO_2(y_{CO2})$  was defined as the molar ratio of  $CO_2$  formed (outlet) per methanol in the feed.
- The CO<sub>2</sub> production rate was normalized vs. foam volume, Pt mass and Pt surface area.







The apparent activation energy of the catalytic deep oxidation was estimated by Arrhenius plots of  $R_{V}CO_{12}$ 



Homogeneous oxidation of  $CH_3OH$  (empty reactor): 550-750° (much CO at low T).

Oxidation of  $CH_3OH$  on blank Fecralloy foam: 375-700°C (comparable CO and  $CO_2$ ).

Oxidation of  $CH_3OH$  on Pt-Fecralloy:

- ➢ 80-300°C
- Negligible CO production
- ➢ O<sub>2</sub> consumption 1.5 times CO<sub>2</sub> production:  $CH_3OH + 1.5O_2 \rightarrow CO_2 + 2H_2O$
- Higher Pt loading causes higher activity (a 16 times increase in Pt mass causes a 70°C decrease of temperature at 10% conversion.



- No diffusion limitations.
- CO<sub>2</sub> formation rate independent of the concentration of methanol (0.2 2.0% vol.): quasi 0<sup>th</sup> order.
- Apparent activation energy of CH<sub>3</sub>OH combustion: 68-70 kJ mol<sup>-1</sup>, in agreement with literature
- The CO<sub>2</sub> formation rate per unit Pt mass has a sharp maximum around 1.5 mg cm<sup>-2</sup>.
- Oxidation rates do not correlate with Pt surface area.
- A synergtic role of Pt and oxides on the Fecralloy substrate (e.g. FeOx) is suggested.





Used in the catalytic combustion of  $CH_3OH$ 

Estimated Pt crystallite size: 55 nm

# 3/10/2015 HV mag 10.52:50 AM 25:00 kV 100:000 x 3/10/2015 HV 10/35/30 AM 25:00

# Noble metal modified Ni foam 3D Electrodes

