

Laser-Induced Incandescence: current applications & future prospects

<u>Francesca Migliorini</u>, Silvana De Iuliis, Roberto Dondè, Silvia Maffi, Gianni Brunello francesca.migliorini@cnr.it

- Brief introduction to Laser-induced incandescence (LII)
- Sphere-integrated LII Spectroscopy Instrument (SiLIIS)
- Optical properties of laser-heated combustion-generated nanoparticles

What is LII ?

III is a physical process which involves a rapid (ns) heating of refractory nanoparticles with a high-power laser.

What does LII do?

Quantitative measurements of refractory materials:

- Concentration
- Primary particle diameter

Measurement features:

- * High selectivity
- * High temporal and spatial resolution
- * High sensitivity and wide dynamic range $ng/m^3 g/m^3$

LII application

* Flames

- * Internal combustion engines
- * Exhaust gases
- * Ambient atmosphere
- * Engineered nanoparticles
- * Suspensions

(black carbon in snow, ice, and rain)

H.A. Michelsen, C. Schulz, G.J. Smallwood , S. Will, Prog Energy and Combust Sci 51, 2015

SiLIIS: Sphere-integrated LII Spectroscopy

Home-made LII based instrument for **Black Carbon** monitoring

- Quartz tube cell placed into an integrating sphere
- * Two-color pulsed LII : 530 and 700 nm
- * Optical calibration
- * High laser fluence ~300 mJ/cm²
- * Detection limit: 200 ng/m³

Italian Patent ITRM20090617

LII for BC monitoring in the environment

Black Carbon Tool – BLACK CAT

develop and optimize a methodology and an algorithm for an accurate quantification of BC in urban and rural environment in the surrounding of Milan metropolitan area.

- Good agreement
- MAAP tends to underestimate BC concentration for values larger than 10 mg m⁻³, due to filter overloading effect

Project funding: Fondazione Cariplo Partners:

LII for BC monitoring in the environment

ACTRIS-2 Mt. Cimone and Po Valley field Campaign 2017

We don't know which instrument is more accurate currently

Partners:

http://actris-cimone.isac.cnr.it/

LII for indoor air quality monitoring

Atmospheric particulate matter: a threat to the health of Raffaello

Objectives:

- Monitor the concentration and chemical composition of the aerosol particulate matter
- Design a new showcase according to the specific environmental and microclimatic conditions of the room

Take home message:

- Particles is the range 0.3-0.5 mm interaction with the porosity of the surfaces of works of art
- high concentration of organic carbon interaction with paper supports

Cardboard of the School of Athens (1509-1511) Ambrosiana Art Gallery in Milan

Good correlation between LII and chemical speciation by thermal/optical transmittance analysis

Black Carbon intercomparison workshop @ PSI

PSI Calibration Center for soot Measurements (CCSM) in Villigen (CH)

Conduct a common set of BC calibration experiments in order to intercompare a large number of LII instruments.

A variety of BC aerosols (both coated and uncoated) will be generated in a simulation chamber for this purpose.

integrating the most advanced European atmospheric simulation chambers into a world-class infrastructure for research and innovation

- Sphere-integrated LII Spectroscopy Instrument
- Optical properties of laser-heated combustion-generated nanoparticles

Laser-heating for tuning flame-soot optical properties

The concept of circular economy is promoting a renewed interest in combustion-generated nanoparticles (soot) that from polluting and unwanted material can turn into a **resource**

the use of **flame-soot** as an **innovative** and **useful material** requires careful control of its properties.

explore the possibility to tailor their **optical properties** by in-line irradiation with a high-power laser

Methodology

Coupling optical and non-optical techniques to clarify the effect of laser- heating

 \circ Particle size distribution evaluation \longrightarrow aggregate size

Experimental layout

Results 1

XRD and Raman spectroscopy analysis emphasize differences in soot nanostructure

Results 2

aggregate size

Significant aggregate fragmentation!

ELPI (Electrical Low Pressure Impactor, Dekati)

- Applicability of SiLIIS instrument for outdoor and indoor air quality monitoring
- Effect of laser irradiation on soot physicochemical properties
- **Tailor** soot optical properties with a tunable laser-irradiation process

- Further study the effect of intense laser irradiation on soot particles
 - \rightarrow fluorescence properties
- Explore new LII applications

Thank you all for your attention & Cheers from Paul Scherrer Institute

