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- THERMAL ENERGY STORAGE
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- PCM REQUIREMENTS

Freeze and melt at a desired temperature.

Freeze and melt in a narrow temperature range.

Similar melting and freezing points.
High latent heats.

High thermal conductivity.
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- POTENTIAL PCM APPLICATIONS

LOW
TEMPERATURE
(-20°C to 5°C)

|

Building passive heating/cooling

POTENTIAL
PCMs FOR
TES*

MEDIUM-LOW
TEMPERATURE
(5°C to 40°C)

MEDIUM
TEMPERATURE
(40°C to 80°C)

|

'1

HIGH
TEMPERATURE
(80°C to 200°C)

*Du et al. Appl. Energy. 220 (2018) 242-273.
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X PROBLEMS (using PCMs in Thermal Energy Storage systems)

- Phase separation. IRRERI 11111

- Tendency for super-cooling.

= -—) 4= -
- Low heat transfer rate. = m— o -
; || Liquid [|=> o= ~] -
L _long charging and — = |iquid
discharging processes. : : : (convection)
Q

il H oo

(conduction)

- SOLUTIONS (to reduce thermal resistance of PCM-Heat Transfer Fluid boundary)

TRADITIONAL | = extending heat transfer surface.
- | sTaTIC
PCMs - - —
o High conductive additives | & nano-PCMs or NePCMs.
Q Indirect tact | intermediate PCM-HTF separation,
ndirect-contac PCM is agitated (dynamic PCM).
N | TRANSPORTABLE
PCMs — Direct-contact PCM system
U Direct-contact =
< 0 — Direct-contact HTF system
m no PCM-HTF
separation
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DIRECT-CONTACT. HTF SYSTEMS

- PCM is circulating with the HTF (slurries).

1-COMPONENT
LIQUID

MICROENCAPSULATED
PCM (mPCM)

SHAPE STABILIZED
PCM (ssPCM)

EMULSION

X To avoid thickening issues = PCM content <20-30 wt.%
= Low energy storage capacity.
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lig. ssPCM+water

lig. paraffin+water

x Encapsulation — t cost
t thermal resistance

x Can present destabilization
problems.

C14(35 wWt%)/W
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CEC-500-2006-026.



- PHASE CHANGE MATERIAL EMULSIONS

* Phase Change Material Emulsions (PCMEs):
latent heat storage fluids consisting in
dispersions of fine PCM droplets in carrier fluids

fl‘l_ ‘L%

"=

. v Pumpable = Same medium to
. transport/store energy

®
'

PCM

t Surface/ t Heat transfer rate

—I‘I— ‘ v volume ratio = of stored energy

X *t Viscosity = t Pumping power

/ t Heat capacity = Possibility of + mass flow = { Pumping power

X 1t Instability problems X 1t Sub-cooling
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- EMULSION TYPES

* Depending on the configuration:

PCM EMULSIONS
o O ©O o O O . ?Fl%ctlng;mm€§c1blg PCM-.cl:)?rr;er
water O ot o Q uid combinations is possible to

repare:
PCM/@ Q O Q B prep
O O - PCM/Water emulsions
o 0° o ¢

- PCM/0Qil emulsions
PCM-in-Water PCM-in-0il

(PCM/W) (PCM/0il)

- PCM/Qil usually exhibit higher viscosities than PCM/W but can operate
within a wider temperature range.

* Depending on the droplet size:

- Macroemulsions: sizes > 1 um
- Microemulsions: sizes from 100 nm to 1 um

- Nanoemulsions (miniemulsions): sizes |~100 nm.

L» Discrepancies about the limit
between micro- and nano-.
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MICROEMULSION FORMATION

1 |

AG

separated phases

thermodynamically
unstable

microemulsion

thermodynamically
stable

v" Thermodynamically stable
(spontaneous formation).

% Destabilized by composition
and temperature changes.

X Sizes ~pm.

X High surfactant content.

NANOEMULSION FORMATION

AG

AG*

nanoemulsion

thermodynamically
unstable

separated phases

thermodynamically
stable

Mc Clements Soft Matter 8 (2012) 1719.

X Thermodynamically unstable
(formed intentionally).

v Very low destabilization kinetics
(kinetically stable).

v’ Sizes lower than ~300 nm.

v" Low surfactant content.
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- FORMULATION PARAMETERS

— Type/nature

— Surfactant

Surfactant-to-oil

ratio (SOR)

Cosurfactant,

HLB

— Dispersed Phase

Droplet shape analysis obtained
at different SOR

oil/W

Komaiko et al. J. Food Lipids 146 (2015) 122-128.

_I: Type/nature
Viscosity

— Type/nature

— Continuous Phase —

__ Continuous/disperse
phase Viscosity ratio

(particularly important when emulsification

occurs in a shear field under laminar conditions)

— Viscosity

Preparation
Method

Low-energy

1

High-energy

Low

viscosit/y' > -
Shear field
High\
viscosity -> ng

S. Tcholakova et al. J. Colloid Interface Sci. 310 (2007) 570-589.



- PREPARATION METHODS

NANOEMULSION

PREPARATION METHODS
1
1 1 1
High-energy Low-energy Combined
emulsification emulsification methods
High-shear stirring || Phase inversion

tempreature (PIT)

— Ultrasonication

Emulsion inversion
point (EIP)

High pressure
— homogenization

& Microfluidic || Spontaneous
nanoemulsification

— Membrane

Koroleva et al. Russ. Chem. Rev. 81 (2012) 21-43.

e HIGH-ENERGY METHODS: emulsification based on selected composition and
supplied energy. Power density ~ 108-1070 W/kg

o LOW-ENERGY METHODS: nanoemulsions are produced as a result of a phase
transition/inversion during emulsification. Power density ~ 103-10° W/ kg

« COMBINED METHODS: combination of high- and low-energy emulsifications.

PCMEs FORMU
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- Solvent-assisted emulsification of paraffin

Paraffin solution
into hexane

SDS solution
into water

Mix and sonication bath

Stable intermediate
emulsion

Solvent
evaporation

RT35

wt% 10 wt%

LZANT.% 4 wt% 10 wt%

Agresti, Fedele, Rossi, Cabaleiro, Bobbo, Ischia, Barison.
Solar Energy Materials and Solar Cells (2019)194, 268-275.

namic size and {-potential of suspensions
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110

RT70HC 10 wt% 223

-104
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- STORAGE CAPACITY

» Total storage capacity of PCMEs is the sum of sensible and latent heat
capacities.

S

Storage Ty I o
[Capacity : _p_ f_ f”: + F_)érl]

] |
Sensible heat Latent heat

- Phase change temperatures (T,,, 1)

- Isobaric heat capacity (c,)
- Latent heat (Ah)

- Density (p)

- HEAT TRANSFER CAPABILITY

o PCMEs should rapidly transfer stored heat with low pumping powers.

- Thermal conductivity (k)
- Dynamic viscosity ()
-+ Isobaric heat capacity (c,)"

Pumping _ Flu » Density (p)

- ’ p;c ) k)
ower p

[ P * For PCMEs undergoing phase change,

¢, would be the apparent heat capacity

Heat Transfer pa.xb.c, ¢
Capability =————

ud
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- PHASE CHANGE CHARACTERIZATION

o DIFFERENTIAL THERMAL ANALISIS (DTA): studies the temperature difference
between reference and sample when

heated/cooled with the same heat flux.
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o DIFFERENTIAL SCANNING CALORIMETRY (DSC): measures the amounts of
heat that must be provided to sample and reference

cells in order to obtain in both cells the same T.
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NUCLEATING AGENT

o NUCLEATING AGENTs: substances (usually impurities) with a low phase tension
that act as seeds to start nucleation. Inside PCM or at PCM-carrier fluid surface.

TYPES: | Nanoparticles: metallic, metal oxides, carbon nanostructures, etc.
- PCM with higher melting temperature.
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- THERMAL CONDUCTIVITY

» Most organic PCMs exhibit low k = PCM emulsions are expected to exhibit
low thermal conductivities than water. Motorized |

actuator

F Agresti, A Ferrario, S
Boldrini, A Miozzo, F
Montagner, S Barison,
C Pagura, M Fabrizio

» k reductions depend on dispersed
components but also on droplet size

and shape. Thermochimica acta
619, 48-52
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- PRACTICAL APPLICATIONS

STORAGE
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g ] >
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o With appropriate melting temperature, PCMEs are potential secondary
fluids for almost any thermal application which requires:

e T Heat storage.
e Heat supply at almost constant temperature conditions.

APPLICATION

* PCM not only in the Storage Tank but circulating.



APPLICATIO

HEAT STORAGE FOR HVAC OR DHW

Zhou et al. Mod. Chem. Ind. 28 (2008) 12-15.

SOLAR -
SYSTEM \\\ —
O 5 rou
\ E} ""ii;o;:ge Exchanger Pser
-©
\xm l-hﬁter

» Authors used a boiler but it could be replaced by a solar collector.

Hot water Phase change emulsion
Equivalent specific heat (kg/kgK) 4.2 6.6
Volumetric flow rate (%) 100 67 C28(30 wt.’%)/W
Flow velocity (m/s) 3 2
Viscosity (mPas) 0.4 4.1
Friction loss per unit length (%) 100 83
Pump power consumption (%) 100 55

» PCME specific it is possible to deliver the pump
heat 1.5 times |:> same amount of heat with a |:> consumption

that of water volume flow 33% lower reduces by 45%.

18



DIRECT ABSORPTION OF SOLAR RADIATION

» Absorptive properties can be enhanced by
dispersing carbon nanostructures in:

e Continuous phase
» Dispersed phase.

Bortolato, Dugaria, Agresti, Barison, Fedele, Sani, Del Col.

i i % Energy Conversion and management (2017) 150, 693-703
NH1 NH2 NH3 N

Agresti, Fedele, Rossi, Cabaleiro, Bobbo, Ischia, Barison.

H4 Solar Energy Materials and Solar Cells (2019)194, 268-275.
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1

mass extinction coeff. (m° Kg™)
o
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mass extinction coeff. (m* Kg™)
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APPLICATIONS



FUTURE R

FUTURE REMARKS

» Practical implementation of PCMEs in solar thermal applications as
cooling/heating media and thermal storage materials seems feasible.

» However, some PROBLEMS must be faced before a competitive edge
over conventional carrier fluids.

o Stability must be studied and improved to ensure reliable and long
periods of usage.

e Sub-cooling needs to be controlled and reduced to enhance system
performance.

» Viscosity increases must be moderated to minimize pumping power.

» Heat transfer performance with phase change still needs a more
comprehensive investigation.

 More combined studies on stability, sub-cooling and viscosity are
required since these three properties are somewhat related and a
balance among them is essential.
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