

Funded by

the European Union

NETCASTPL4.0

WORKIN

NetCastPL4.0 Seminars Series

May 26, 2025, 02:00 - 03:15 pm CET

Production-microstructure-properties of ductile cast irons

Aims of the seminars

Material defects and metallurgical discontinuities greatly impact an alloys' mechanical properties – especially in castings, where section sensitivity and variations in chemical composition can significantly affect the microstructure. Defects in materials cannot be easily quantified through conventional testing techniques, so, it should be required that the index of a material's integrity could be obtained from its tensile-flow behavior, as tensile testing is the simplest technique to perform. Today's NetCastPL4.0 seminars are focused on the correlations between production-microstructure-properties through tensile behavior analysis and the fatigue resistance of ductile cast irons produced through different sections.

02:00 pm – Giuliano Angella (20-25 minutes)	02:30 pm – Stefano Masaggia (20-25 minutes)
A New Material Integrity Index for foundry castings:	The Influence of wall thickness on the fatigue limit of
the case of 4.2 wt.% Silicon Ductile Iron produced	V-notched bars made of as-cast or heat treated
through different sections.	ductile irons.
A new procedure for assessing the ductile iron castings	The presentation reports the fatigue investigation and
integrity has been proposed and is based on the tensile-	illustrates the application of a fatigue design procedure
flow curve analysis through the modelling of the	in the presence of notch effects, which represents an
experimental tensile-flow curves using the Voce	unconventional extension of Linear Elastic Fracture
equation. If the parameters from the best-fitting Voce	Mechanics to U- and V-shaped notches with arbitrary
equation of a statistically meaningful set of	notch opening angle, size and root. A complete and
experimental tensile-flow curves are plotted in a Matrix	homogeneous set of data for fatigue design has been
Assessment Diagram (MAD), they are found to lie along	developed and optimal fatigue strength conditions were
straight lines. The coefficients of the best fitting lines	found: the HCF behavior of heat-treated DIs can be
provide information on the soundness or defectiveness	adequately described by considering hardness and size
of the castings. The quality of this approach is based on	of the graphitic nodules. In the absence of pre-existing
the unexpected regular strain-hardening behaviors of	defects, the material containing small graphite nodules
defective materials, referred to as Defects-Driven	is favored. If instead a defect tolerant design approach is
Plasticity that gives rise to the definition of a new	adopted and is required that mechanical components,
Material Integrity Index (MII). As study case of	characterized by severe defects and/or notches, and
application of this MII, the section-sensitivity	operate for a prolonged time in the propagation
assessment of a 4.2 wt.% Silicon Ductile Iron is reported	threshold regime, the material containing coarse
in the seminar.	graphite nodules would be more effective.

Project office Reymonta 23, 30-059 Kraków, Poland netcastpl40@agh.edu.pl | +48 12 617 27 01

www.netcastpl4-0.agh.edu.pl

<u>Giuliano Angella</u>

After achieving the Philosophical Doctor degree in Materials Engineering at the University of Sheffield (UK), since 2001 he is employed in the research institute CNR-ICMATE, and now he is senior researcher working on mechanical and microstructure characterization of metal alloys for industrial applications. From scientific collaborations with some of the main Italian metallurgical companies, he has dedicated his recent research activity to the development of constitutive equations and correlations between productionmicrostructure-properties of conventional and advanced cast irons.

Stefano Masaggia

After his degree in Mechanical Engineering, since 1996 he has worked in Zanardi Fonderie S.p.A., Italy, first as Foundry Designer, later as R&D Engineer, and currently as Foundry and Heat Treatment Technologist. He has been mainly involved in process and product development of conventional, austempered and isothermed ductile irons, as process simulation developer and R&D project leader. His expertise is also on failure analysis, mechanical testing and plant operations. He has been supervisor of thesis works with students from University of Padua and author/co-author of papers published on International Journals.

Event link:

Join the event

NETCASTPL4.0

Project office Reymonta 23, 30-059 Kraków, Poland netcastpl40@agh.edu.pl | +48 12 617 27 01

